
Linking Stack Overflow and Github Public
Data for Mining Purposes

Norbert Eke

Carleton University

Ottawa, ON

NorbertEke@cmail.carleton.ca

ABSTRACT
Developer expertise learning and recommenda-

tion is the task of defining and quantifying the

expertise areas and levels of developers, then cre-

ating a top-n ranking for developers who are most

qualified to perform a task. A software repository

mining approach on this task would allow the cre-

ation of a developer expertise profile consisting of

topical expertise and interest distributions learned

from Stack Overflow and Github public data. This

project addresses building a database consisting of

Stack Overflow and Github public data, then link-

ing them together based on a common attribute.

KEYWORDS
Data Mining, Mining Software Repositories, Big

Data Management, Stack Overflow, GitHub, Data

Mapping, Data Set Linkage, Data Exchange, Data

Management, Database Design

ACM Reference Format:
Norbert Eke. . Linking Stack Overflow and Github Pub-

lic Data for Mining Purposes. In Proceedings of . ACM,

New York, NY, USA, 11 pages.

1 INTRODUCTION
The problem of developer expertise learning and

recommendation is a well defined problem in soft-

ware engineering. Project managers are often faced

with the task of deciding who is the best developer

to handle a certain bug fix, code review or pull re-

quest. A task at hand needs to be assigned to one or

more developers within the company. The optimal

task assignment would allow the developer(s) with

the most amount of expertise and experience in the

domain to complete the task at hand. To achieve

such a task assignment, defining and predicting

the expertise of a developer is needed.

This problem is worth looking at, as it is impor-

tant for any software company to be able to define

and quantify certain expertise levels for their devel-

opers. It is interesting to look at this problem from

a data mining perspective. Software developer ex-

pertise can be learned from analyzing every inter-

action of developers with their software environ-

ments. Software repository mining data sources

like question answering websites and source code

repositories can be considered a rich public data

gold mine for learning developer expertise. Stack

Overflow is the most popular question answering

website for software related questions. Github is

the most popular code repository website host-

ing source code for millions of software projects,

alongside their commits, pull requests and issues.

These two data sets are very good data sources for

a software repository mining project, assuming

they can be linked together.

Developer expertise learning and recommenda-

tion is a difficult task for multiple reasons. Firstly,

one needs to define what makes someone expert

in a field or concept or programming paradigm.

Secondly, there are too many different topics, con-

cepts, programming languages and development

areas/activities in computer science to classify ex-

pertise in. It is difficult even for a human to quan-

tify and compare multiple developers across all



, , Norbert Eke

possible ways of classifying expertise. Thirdly, con-

sidering the first and second point, it is that much

harder to make an algorithm learn enough from

data to perform a recommendation or ranking task,

ranking developers based on a learned expertise

score.

The Naive approach of counting up votes on

each user’s answers on Stack Overflow and asso-

ciating them to tags on the questions would not

work. Most experts in the community of software

repository mining would agree that tags on Stack

Overflow are too general to define expertise levels.

For instance, the most frequently used tag on Stack

Overflow is JS (JavaScript), but saying that some is

in expert in JavaScript does not reveal what specific

activities/tasks can they perform in that language.

Disproving the Naive approach does not answer

the question why this problem has not been solved

before. There has been a lot of research done in this

area of software engineering. For example, Matter

et al. [7] built a vocabulary based expertise model

for assigning bug reports to developers for bug

fixing tasks. Wu et al. [10]’s approach performs de-

veloper recommendation with k-nearest-neighbor

search using bug similarity and expertise ranking

with various metrics. This problem has been previ-

ously explored, but a developer activity profiling

approach via mining Stack Overflow and Github

public data was not considered. A data mining

approach would allow the creation of a developer

expertise profile consisting of topical expertise and

interest distributions learned from Stack Overflow

and Github public data. One could argue that a

topical distribution of expertise could be more con-

venient, more precise and possibly even more spe-

cific than a vocabulary based expertise model, for

example.

This paper only addresses the first part of this

project, which is building a database consisting

of Stack Overflow and Github public data, then

linking them together based on a common (link-

able) attribute. Limitations of this project are the

lack of large computational resources and data pri-

vacy concerns that do not allow access to Github

and Stack Overflow user’s email address (or email

hash) data. Throughout the project only a shared

server was available with limited disk space. In the

future, a new server with more disk space available

will be considered, since big data analysis projects

need more computational resources.

1.1 Summary of
Contributions

The rest of the paper moving forward will contain

related works in section 2, then the whole process

of the database creation in section 3, including data

gathering (3.1), database design (3.2), database link-

age (3.3) and data reduction/filtering (3.4). Results

will be found in section 4, then conclusion and

future work will follow in sections 5 and 6.

The contribution of this project is two-fold:

• Linking public data from Stack Overflow and

Github together in one data set

• Reducing the size of the joined data set sig-

nificantly by keeping only linked data

2 RELATEDWORK
In one of its latest public data dumps from De-

cember 2018 Stack Overflow listed over 42 million

posts from almost 10 million registered users. To

analyze how Stack Overflow posts evolve Baltes et

al. [4] built SOTorrent [3], an open data set aggre-

gating and connecting the official Stack Overflow

data dump to other web sources, such as Github

repositories. SOTorrent provides access to the ver-

sion history of Stack Overflow content at two dif-

ferent levels: whole posts and individual text or

code blocks. GHTorrent [6] is similar to SOTorrent,

as the creators wanted to create an open data set

mirroring the data present on Github.

In 2013, Vasilescu et al. [9] linked GitHub and

Stack Overflow users based on a computed MD5

hash of the email attribute found in GHTorrent and

SOTorrent’s User tables. This linkage was possible

in the past, but after 2016 both GHTorrent and

SOTorrent were required to remove any personal

data stored about users in order to follow GDPR

compliances. Thus, since 2016 the linkage between



Linking Stack Overflow and Github Public Data for Mining Purposes , ,

the two open data sets has been questionable. In

order to create an expertise profile consisting of

topical expertise and interest distribution, it would

be favorable to merge both data sources.

Topic models are a type of statistical model used

in text mining to discover hidden semantic struc-

tures in textual data. Most of such models discover

patterns of distributions of topics within the tex-

tual data. Tian et al. [8] used topic models in their

work on predicting the best answerer for a new

question on Stack Overflow. Their approach learns

user topical expertise and interest levels by profil-

ing each user’s previous activity and reputation

on Stack Overflow. Tian et al. [8] claim that the

“semantic similarity between the user profile and

the new question can be captured through topic

models". For each potential answerer each user’s

expertise level can be learned through previous

user activity data and up votes from the user pro-

file. Arwan et al. [1] proposed a mechanism for

source code retrieval on Stack Overflow by “infer-

encing concept location from source code" using a

Latent Dirichlet Allocation (LDA) model, which is

one of the most popular topic models. Topic mod-

eling have been previously used to learn semantic

similarity between user profiles, posts and even

source codes on Stack Overflow.What my research

is interested in creating is a developer expertise

profile/ranking consisting of topical expertise and

interest distributions learned from mining public

software repository data like Stack Overflow and

Github.

3 DATABASE CREATION
3.1 Data Gathering
All data used in this project is publicly available.

The Stack Overflow data comes from Baltes et

al. [3], who created SOTorrent for the purposes

of mining and analyzing the evolution of Stack

Overflow posts. SOTorrent releases a new version

of processed Stack Overflow data dumps every 3

months. Each version of the SOTorrent data can be

downloaded from their Zenodo download page [2].

SOTorrent data can also be looked at and queried

online, as it is available as a BigQuery data set
1
.

In this project the data dump from December 9th

2018 was used, as it was the latest version avail-

able at the start of the project. Not all data was

downloaded, as certain tables containing data on

Stack Overflow post evolution (e.g. PostHistory,

PostVersion tables) are unrelated to future analy-

sis, thus they are not needed. Compressed XML

files of each table’s raw data were downloaded

from Zenodo’s download page
2
. The tables down-

loaded included Users, Posts, PostLinks, PostType,

PostReferenceGH, Comments, CommentUrl, GH-

Matches, Tags, Badges and Votes tables totaling 29

GB of compressed raw data. After the download-

ing process has ended, all ZIP files were unzipped,

resulting in one XML file per table, totaling around

100 GB of data.

TheGithub data comes fromGousios’ work named

GHTorrent [6], a project that has been collecting

data from all public projects available on Github.

GHTorrent releases a new version of MySQL data

dumps every month, while it also offers daily data

dumps for MongoDB. Each version of GHTorrent

MySQL data [5] can be downloaded from GHTor-

rent website’s download page
3
. GHTorrent data

can also be looked at and queried online, as it is

available as a DBLite web data set
4
. In this project

the data dump from March 1st 2019 was used, as

it was the latest version available at the start of

the project. GHTorrent’s data dump comes in one

large ZIP file, which needed to be uncompressed.

The zipped version of the file is 96557 MB, and

it took 4 days to download. Unzipping the main

directory resulted in one CSV file for each table,

for a total of 21 tables measuring over 400 GB of

data.

1
https://bigquery.cloud.google.com/dataset/sotorrent-org:

2018_12_09

2
https://zenodo.org/record/2273117#.XKVGXZhKhPY

3
http://ghtorrent.org/downloads.html

4
http://ghtorrent.org/dblite/

https://bigquery.cloud.google.com/dataset/sotorrent-org:2018_12_09
https://bigquery.cloud.google.com/dataset/sotorrent-org:2018_12_09
https://zenodo.org/record/2273117#.XKVGXZhKhPY
http://ghtorrent.org/downloads.html
http://ghtorrent.org/dblite/


, , Norbert Eke

3.2 Database Design
Loading the CSV and XML files into the MySQL

database was a very time consuming process. Some

of the raw data files were over 100 GB. Loading

such large files into tables could take days, as a

few hundred million, or even billions of rows have

too many foreign key constraints that needed to

be checked by the MySQL engine in order to al-

low the storage of the data in the table. All SQL

scripts performing table creations, data imports

and general database manipulations can be found

in SOTorrent’s Github repository
5
and GHTor-

rent’s Github repository
6
.

Importing all data from both data sets took 2

weeks as downloading, unzipping and importing

all data was not only time consuming, but also chal-

lenging in terms of disk storage. For this project

a shared server was used with technical specifica-

tions of 32 GB RAM, 2 TB disk space and 30 CPU

cores. Since this server is shared by 5 people, only

about 400 GB disk space was available. The most

challenging part was managing disk space during

data imports, as the Github and Stack Overflow

raw data files totaled up to 500 GB. The import-

ing of the data was not achieved all at once, but

rather through several iterations. Only a limited

amount of raw data files were kept on server, and

the rest of the files were compressed back to save

disk space. After a table was successfully imported,

its raw CSV or XML file was deleted to free up disk

space.

Throughout the data import phase it was discov-

ered that using MyISAM over InnoDB as database

engine is more favorable, since there is a signif-

icant execution time difference between the two

database engines when importing large amounts

of data into MySQL. MyISAM database engine

does not support foreign keys constraints, while

it supports table-level locking. On the other hand

5
https://github.com/sotorrent/db-scripts/tree/master/

sotorrent

6
https://github.com/gousiosg/github-mirror/tree/master/sql

InnoDB supports foreign key constraints and row-

level locking. MyISAM is preferred when perform-

ing tasks that require fast import and querying

speed, while InnoDB being the default database en-

gine for MySQL, is more optimal for regular opera-

tions. For this particular reason all of the large raw

data files were imported into the database using

the MyISAM database engine. After all necessary

database manipulations have been performed on

these tables, the database engine was changed for

each table back to the default engine, InnoDB, to
allow foreign key constraints to be enforced.

Table 1 contains descriptions for each table’s con-

tent. Figure 1 and 2 show the database schema and

all attributes within each table of the SOTorrent

and respectively the GHTorrent data set. Some de-

scriptions come directly from Gousio’s paper [6]

describing the content of tables in his database.

All tables from GHTorrent are shown in figure 2,

while only the relevant tables from SOTorrent are

shown on the diagram in figure 1.

3.3 Database Linkage
The most important task in this project is linking

together the SOTorrent and GHTorrent databases.

After a thorough investigation of both databases’

main tables two candidate attributes within each

database were identified to be potentially good

attributes to link the two data sets on.

The first candidate attribute pair is email hash
from SOTorrent’s User table and email in one of

GHTorrent’s earlier versions (before March 2016)

of the User table. This candidate attribute pair

was used by Vasilescu et al. [9] in 2013 to “merge

(i.e., link) a GitHub and a Stack Overflow user if

the computed MD5 hash [of the email attribute in

GHTorrent’s User table] is identical to the MD5

email hash [stored in SOTorrent’s User table]". This

linkage was possible in 2013, but after 2016 neither

GHTorrent, nor SOTorrent were allowed to store

email addresses or email hashes in their databases,

as it violated GDPR compliances. This attribute

pair was the more favorable option, but unfortu-

nately SOTorrent took out all email hash instances

https://github.com/sotorrent/db-scripts/tree/master/sotorrent
https://github.com/sotorrent/db-scripts/tree/master/sotorrent
https://github.com/gousiosg/github-mirror/tree/master/sql


Linking Stack Overflow and Github Public Data for Mining Purposes , ,

Table Name Description Table Name Description

project Github project repositories

pull request

commits

Linkage between pull request

and commits tables on Github.

GH_users Github users data and metadata repo_labels

Keyword labels attached to a

project’s repository on Github.

project

members

Users with commit access

to the referenced project

project

languages

List of programming languages

used in a project on Github.

organization

members
List of members in an organization project topics

Topical classification of a

project on Github.

commits

A list of all commits on Github.

The project_id field refers to the first

project this commit has been added to

issue labels

Labels attached to each issue

created for a Github project

project commits List of all commits to a project. Comments

Data related to comments on

Stack Overflow posts

commit parents Commits that are parents to a commit CommentURL

Hyperlinks appearing on

Stack Overflow posts

commit

comments
Code review comments for a commit Badges

Badge awards received by

Stack Overflow users

watchers users that have starred a project SO_users

All metadata on

Stack Overflow users

followers users that are following another user PostType

Type of post

on Stack Overflow

issues

Issues that have been recorded

for a project
PostLinks

Shows different linkages

between related

posts on Stack Overflow

issue events

Chronologically ordered

list of events on an issue
Posts

All data and metadata related

to a post on Stack Overflow

issue comments Discussion comments on an issue Votes

Keeps track of each user’s

votes on different

Stack Overflow posts

pull requests

List of pull requests for base repo.

Requests originated at head head_repo/

commit and are created by user_id

PostReference

GH

Github hyperlink references

found in Stack Overflow posts

pull request

comments
Discussion comments on a pull request Tags

Shows tag names and counts

of tags in Stack Overflow posts

pull request

history

Chronologically ordered

list of events on a pull request
GHMatches

Helper table for Post

ReferenceGH. Shows

matching Github hyperlinks

in Stack Overflow posts

Table 1: Short description of content in all tables within the GHTorrent and SOTorrent data
sets.



, , Norbert Eke

Figure 1: Redesigned database schema for Stack Overflow data.

from current and older versions of their database,

thus currently no such linkage is possible.

The second candidate attribute pair was the repo
attribute from SOTorrent’s PostReferenceGH ta-

ble, and a substring of url attribute in GHTor-

rent’s Projects table. The repo attribute is a string
consisting of the “username/repo_name" pattern.



Linking Stack Overflow and Github Public Data for Mining Purposes , ,

Figure 2: Redesigned database schema for Github data.

The url attribute consists of a string with pattern

“https://api.github.com/username/repo_name/ ". Tak-
ing a substring of GHTorrent’s url attribute gives

the same string pattern as the one in SOTorrent’s

repo attribute, thus the two databases can be linked

using a query joining the attributes’ two tables.

After considering what kind of join should be

performed, the conclusion was reached that a left

join between SOTorrent’s PostReferenceGH and

GHTorrent’s Projects table is needed, as it would

make more sense to keep everything in SOTorrent

data, and only join GHTorrent’s Projects that are

a match. Completing this left join could be prob-

lematic, as SOTorrent’s PostReferenceGH table has

over 6 million rows, and GHTorrent’s Projects ta-

ble contains over 116 million rows. Performing a

left join on two such tables is time consuming in

best case scenario, while the server could time out

or run out of computational resources in worst

case scenario.

A much more fail-safe, well thought-out, compu-

tationally less expensive and less time consuming

way needed to be used in order to avoid a poten-

tially risky left join. This alternative, and better

solution consisted of two main tasks: candidate

attribute pair matching, and table stitching.

The following is the algorithm for candidate at-

tribute pair matching:

(1) Create indices on the two target attributes

that will be used for the linkage (repo and

substring of url)

(2) Create master table containing partial pri-

mary keys (PPK) created from the two tables’



, , Norbert Eke

Figure 3: Stack Overflow and Github linked Database overview with linkage shown.

primary keys. Store important foreign keys

(FK) of the two tables to be linked

(3) Run select statement for linking the two ta-

bles, then take the results and insert them

into a master table

(4) Create a secondary linkage table that will not

contain PostReferenceGH IDs, but rather just

create linkage between GHTorrent’s Projects

and SOTorrent’s Posts tables

(5) Finally, create indices on the PPKs of the mas-

ter linkage table so the next task, table stitch-

ing will run faster

Note that step 3 runs very fast, as in step 1 in-

dices are created on the attributes to be joined.

Another note that in step 3 the WHERE clause has

“PostReferenceGH.Repo = projects.url" as filtering

condition. Step 4 is done just for convenience; it

is more useful to have the SOTorrent’s Posts table

directly connected to GHTorrent’s Project table,



Linking Stack Overflow and Github Public Data for Mining Purposes , ,

since they belong to the main tables of each data-

base.

The following is the table stitching algorithm,

which is much simpler:

(1) Create table GH_projects_linked and insert

into it the result of a join between Master

Linkage and GHTorrent’s projects table

(2) Alter GH_projects_linked table to add the

necessary PPKs and FKs

(3) Create table SO_Posts_linked and insert into

it the result of a join between Master Linkage

and SOTorrent’s Posts table

(4) Alter SO_Posts_linked table to add the neces-

sary PPKs and FKs

(5) Finally, create indices for the PPKs of the

newly “stitched" tables

The result of candidate attribute pair matching

and table stitching algorithms can be called the

database linkage between SOTorrent and GHTor-

rent, and it can be visualized in figure 3.

3.4 Database Reduction
As previously mentioned, there was over 400 GB of

GHTorrent data present in the database. It makes

sense to try to reduce the amount of data to be

mined. All Github data would represent too much

data that can not be looked at all at once. The idea

behind the database reduction was to only keep

Github data that was successfully linked to Stack

Overflow data. The linkage from section 3.3 oc-

curred on the Projects table, which is the main

table in GHTorrent with all other tables branching

out it. Thus, the database reduction consisted of

running CREATE TABLE AS statements with se-

lecting every attribute of a particular table, and in-

cluding a filtering condition in the WHERE clause

to only keep rows which are connected or related

to project IDs that exist in the projects_linked ta-

ble obtained during table stitching. This database

reduction routine was executed on all 21 tables of

the GHTorrent database, then ALTER TABLE state-

ments were executed to properly point the foreign

keys to the newly created “reduced" tables, thus

completing the table reduction. After this process

Relation Name Original Size
(# of Rows)

Reduced Size
(# of Rows)

projects 116 217 069 399 262

commits 1 276 402 890 63 846 528

repo_labels 353 235 838 1 715 494

watchers 138 749 808 17 804 316

commit_

comments
5 489 034 699 044

commit_

parents
1 275 331 898 479 483 406

project_

commits
6 096 603 791 63 846 528

pull_requests 47 844 942 3 078 255

pull_request_

comments
32 182 723 4 371 393

pull_request_

history
124 096 184 8 208 929

pull_request_

commits
243 579 978 19 747 343

issues 91 057 372 3 119 766

issue_labels 25 710 804 6 718

issue_comments 139 761 328 5 962 468

issue_events 127 166 727 101 602

project_languages 128 592 248 2 260 577

Table 2: Table reduction results showing the
original and reduced sizes of eachGHTorrent
table

the original table was dropped, thus reducing the

size of the data set by allowing only linked, rele-

vant data to be mined and analyzed in the future.

4 RESULTS
There were no experiments conducted during the

creation of the database. The only measurable re-

sults are table reduction results showing howmuch

data got eliminated from the data set. Table 2 shows

the original and reduced size of each table in GHTor-

rent, size being measured in number of rows. As

one can see, the original size of most tables is hun-

dreds of millions of rows, and in some cases even

over a billion rows. To make the mining process

easier, and more manageable, most tables within



, , Norbert Eke

the GHTorrent data set got reduced to a few mil-

lion, or couple of dozen million rows, which is

more desirable. Most importantly the projects ta-

ble got reduced from over 116 million projects to

almost 400 000 projects. Mining data from over 100

million projects is way too large of a task, but even

a sample size of 400 000 distinct projects will prob-

ably represent a challenge in the future. Two more

tables that needed to be reduced to a smaller size

were commits and project_commits. These two ta-

bles’ original size is 1.276 billion rows and 6.096

billion rows. It became difficult to query these two

tables. After the database reduction step the re-

duced size is 63.846 million rows for both of them,

which allows faster querying and more reasonable

analysis in the future.

Table 3 shows the reduction rate results from

the database reduction task. Most tables get re-

duced by a rate of over 90 %, which is impressive.

The average reduction rate is 92.8539 %. The only

outlier is the commit_parents table, which stores

inheritance relationships within a project’s com-

mits. This table only gets reduced by 62.4032 %. It is

worthmentioning that after database reduction the

total amount of data within the linked database

(estimated 500 GB) got reduced to an estimated

amount of 150-200 GB.

5 CONCLUSION
This project successfully linked two open data sets,

SOTorrent and GHTorrent, which is all the more

significant, since the only previous linkage (email

hash) is not available anymore due to privacy con-

cerns. The linkage of these two open data sets will

allow more fruitful research to be carried out in

the field of software repository mining, where es-

pecially SOTorrent is playing an important role,

being the current mining challenge for MSR 2019

conference. As a result of this project a new data-

base has been created, and irrelevant (not linked)

data has been removed, making the average reduc-

tion rate for GHTorrent data to be 92.8539 %.

Relation Name Table Reduction
Rate

projects 0.996565

commits 0.949979

repo_labels 0.995143

watchers 0.871680

commit_

comments
0.872647

commit_

parents
0.624032

project_

commits
0.989528

pull_requests 0.935662

pull_request_

comments
0.864170

pull_request_

history
0.933850

pull_request_

commits
0.918929

issues 0.965738

issue_labels 0.999739

issue_comments 0.957338

issue_events 0.999201

project_languages 0.982421

average reduction 0.928539
Table 3: Reduction rate results from the data-
base reduction task described in section 3.4

6 FUTUREWORK
The next important step in this project is to start

the data cleaning process. All textual data needs to

go through some text pre-processing, while some

numerical and categorical data needs further pro-

cessing, and formatting, for example counting how

frequently an action (for instance, creating a pull

request) happens. Once the data cleaning tasks

are finished, the next steps will include applying

a number of feature engineering techniques for

all numerical data and fitting topic models for all

textual data.



Linking Stack Overflow and Github Public Data for Mining Purposes , ,

7 ACKNOWLEDGEMENTS
I would like to acknowledge the great advice re-

ceived from my supervisor, Prof. Olga Baysal. I

would like to thank Prof. Ahmed El-Roby for point-

ing out the gaps in my research and guiding me to

a better path. Also I need to thank Saraj Manes, Di-

ana Lucaci and Vasileios Lioutas for helping with

technical details.

REFERENCES
[1] Arwan, A., Rochimah, S., and Akbar, R. J. Source code

retrieval on stackoverflow using lda. In 2015 3rd Inter-
national Conference on Information and Communication
Technology (ICoICT) (2015), IEEE, pp. 295–299.

[2] Baltes, S., and Dumani, L. Sotorrent dataset, Dec 2018.

[3] Baltes, S., Dumani, L., Treude, C., and Diehl, S. So-

torrent: reconstructing and analyzing the evolution of

stack overflow posts. In Proceedings of the 15th In-
ternational Conference on Mining Software Repositories,
MSR 2018, Gothenburg, Sweden, May 28-29, 2018 (2018),
pp. 319–330.

[4] Baltes, S., Treude, C., and Diehl, S. Sotorrent: Study-

ing the origin, evolution, and usage of stack overflow

code snippets. arXiv preprint arXiv:1809.02814 (2018).
[5] Gousios, G. The ghtorrent project.

[6] Gousios, G. The ghtorrent dataset and tool suite. In

Proceedings of the 10th Working Conference on Mining
Software Repositories (Piscataway, NJ, USA, 2013), MSR

’13, IEEE Press, pp. 233–236.

[7] Matter, D., Kuhn, A., and Nierstrasz, O. Assigning

bug reports using a vocabulary-based expertise model

of developers. In 2009 6th IEEE international working
conference on mining software repositories (2009), IEEE,
pp. 131–140.

[8] Tian, Y., Kochhar, P. S., Lim, E.-P., Zhu, F., and Lo,

D. Predicting best answerers for new questions: An

approach leveraging topic modeling and collaborative

voting. In International Conference on Social Informatics
(2013), Springer, pp. 55–68.

[9] Vasilescu, B., Filkov, V., and Serebrenik, A. Stack-

overflow and github: Associations between software

development and crowdsourced knowledge. In 2013 In-
ternational Conference on Social Computing (2013), IEEE,
pp. 188–195.

[10] Wu, W., Zhang, W., Yang, Y., and Wang, Q. Drex:

Developer recommendation with k-nearest-neighbor

search and expertise ranking. In 2011 18th Asia-Pacific
Software Engineering Conference (2011), IEEE, pp. 389–
396.


	Abstract
	1 Introduction
	1.1 Summary of Contributions

	2 Related Work
	3 Database Creation
	3.1 Data Gathering
	3.2 Database Design
	3.3 Database Linkage
	3.4 Database Reduction

	4 Results
	5 Conclusion
	6 Future Work
	7 Acknowledgements
	References

